CHEMISTRY MARKING SCHEME 2015 56/1/RU

. NO.	Value points	MARKS
Q.1	H ₂ SO ₃ H ₂ SO ₄ H ₂ S ₂ O ₈ ,H ₂ SO ₅ (any two formulae)	1/2 + 1/2
Q.2	1-ethoxy-2-methylpropane	1
Q.3	Due to coagulation of colloidal clay particles	1
Q.4	CH ₃ -CH(Br)-CH ₃	1
Q.5	X_4Y_3	1
Q.6	Similarity: Both show contraction in size /Both show irregularity in their electronic configuration/Both are stable in +3oxidation state (any one)	1
	Difference: Actinoids are mainly radioactive but lanthanoids are not/ Actinoids show wide range of oxidation states but lanthanoids do not /Actinoid contraction is greater than lanthanoid contraction. (any other one similarity and one difference)	1
Q.7	(i) Pentaamminechloridocobalt(III) ion	1
	(ii) K ₂ [NiCl ₄]	1
Q.8	(i) PCC / Cu at 573 K	1
	(ii) NH ₃ , Δ (heat)	1
	OR	
8.	(i) C ₆ H ₅ COCH ₃ < CH ₃ COCH ₃ < CH ₃ CHO	1
	(ii) CH ₃ COOH <cl-ch<sub>2-COOH < F-CH₂-COOH</cl-ch<sub>	1
Q.9	(i) Negative deviation ,temperature will increase.	1/2 +1/2
	(ii) Blood cell will swell due to osmosis , water enters into the cell.	1/2+1/2
Q.10	Cu ²⁺ + 2e → Cu	
	63.5 g Cu is deposited = 2x96500 C	
	1.27 g Cu is deposited = 2x96500x1.27/63.5 C = ixt (Q = ixt)	1
	t = 2x96500x1.27/63.5 x 2 = 1930s Or	1

	by Faraday First law	
	m = zx i xt	1/2
	z = atomic mass/valencyxF	
	1.27 = 63.5x2xt/2x96500	1/2
	t = 1930 s	1
Q.11	$p^0 - p = w_s x M solvent$, $s = solute$	1
	p ⁰ M _s x Wsolvent	
	$(32-31.84)/32 = 10 \times 18 / Ms \times 200$	1
	$M_s = 180 \text{ g/mol}$	1
Q.12	(i) Zone refining	1
	(ii) SiO ₂ act as flux to remove the impurity of Iron oxide	1
	(iii) Depressants prevent one type of sulphide ore forming the froth with air bubbles.	1
Q.13	(i) Starch.	1
	(ii) α- Helix polypeptide chains are stabilized by intramolecular H-bonding whereas β- pleated	
	sheet is stabilized by intermolecular H-bonding. (or any other difference)	1
	(iii) Pernicious anaemia	1
Q.14	(i) Hydration isomerism	1
	(ii) Electronic configuration ist _{2g} ⁴ / or by diagram	1
	(iii) Hybridization is sp ³ d ² and shape is octahedral.	1/2 + 1/2
Q.15	(i)	
	t -	
	NH_2 NaNO ₂ + HX N_2X	
	273-278 K ↓	1
	2/3-2/8 K	
	Benzene diazonium	
	halide	
	+ -	
	N_2X Cu X	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(where X=Br)	
	(ii)	

	$\begin{array}{c} Cl \\ + H_3C-C-Cl \end{array} \xrightarrow{Anhyd. AlCl_3} \begin{array}{c} Cl \\ CH_3 \end{array}$	1
	iii)CH ₃ CH ₂ CI $\frac{Na}{dry\ ether}$ \rightarrow CH ₃ CH ₂ CH ₃	1
15	OR	
	(I) $\begin{array}{c} Cl \\ + Cl_2 \xrightarrow{\text{Anhyd. FeCl}_3} \end{array} + Cl$	1
	(ii) $CH_3CH_2CI + AgNO_2 \rightarrow CH_3CH_2 NO_2 + AgCI$	1
	(iii) $CH_3CH_2CH_2CH(Br)CH_3 + KOH (alc.) \rightarrow CH_3CH_2CH=CHCH_3$	1
Q.16	(i) Stoichiometric defect	1
	(ii) Schottky defect e.g.NaCl(or any other example)	1/2 + 1/2
	(iii) Density of crystal decreases	1
Q.17	$\Lambda_{\rm m} = \frac{1000 x k}{M} \rm Scm^2 mol^{-1}$	1/2
	$\Lambda_{m} = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-4}} \text{ Scm}^{2} \text{mol}^{-1}$ $= 210 \text{Scm}^{2} \text{mol}^{-1}$	1
	$\Lambda_{\rm m}^{\ 0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1/2

		1
	$\alpha = 210/400 = 0.525$	1
Q.18	Physisorption : adsorbate is held by weak van der Waals' force	1,1,1
	non-specific	
	It forms multimolecular layer	
	Chemisorption: adsorbate molecules are held by strong forces like a chemical bond	
	It is specific	
	It forms unimolecular layer	
	(or any correct three points)	
Q.19	 (i) Phenoxide ion is stabilized by resonance as compared to CH₃O⁻/ In phenol, oxygen acquires + ve charge due to resonance and releases H⁺ ion easily whereas there is no resonance in methanol. 	1
	(ii) Due to lone pair-lone pair repulsion on oxygen.	1
	(iii) $(CH_3)_3C^+$ is 3^0 carbo-cation which is more stable than CH_3^+ for S_N1 reaction.	1
Q.20	СООН	1+1+1
	COOH	
	i) (CH ₃) ₂ C= N-NH ₂ ii) / benzoic acid iii) / m-bromobenzoic acid	
Q.21	(a)	
	(i) Because Cu ⁺ undergoes disproportionation as 2Cu ⁺ → Cu + Cu ²⁺	1
	(ii) Because of small size of metal, high ionic charge and availability of vacant d –orbital.	1
	(b) $Cr_2O_7^{2-} + 8H^+ + 3NO_2^- \rightarrow 2Cr^{3+} + 3NO_3^- + 4H_2O$ (Balanced equation only)	1
Q.22	(i) ethylene glycol HO-CH ₂ -CH ₂ -OH	1/2 +1/2
	Terephthalic acid HOOC—COOH	
	(ii) 1,3- butadiene CH ₂ =CH-CH=CH ₂	
	$CH = CH_2$	1/2 + 1/2
		/2 1 /2
	Styrene	
	(iii) Chloroprene CH ₂ =C(Cl)-CH=CH ₂	1/ 1/
	(Note: Half mark for name/s and half mark for structure/s in each case)	1/2,1/2
Q.23	(i) Social awareness ,Health conscious, Caring , empathy, concern .(or any other two values)	1/2 , 1/2
1		

	(ii) Cartoon display / street display/poster making (or any other correct answer)	1
	(iii) Wrong choice and over dose may be harmful.	1
	(iv) Saccharin , Aspartame (or any other example)	1/2 + 1/2
Q.24	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI , there is an increase in acidic	1
	character observed.	1
	(ii)Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8 (iii)Due to non- availability of d orbitals	1
	(b)	
	i) F	1+1
24	OR	
	(i) White Phosphorus, because it is less stable due to angular strain (ii) Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer. Or $NO+O_3 \rightarrow NO_2+O_2$	1/2, 1/2
	(iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the lone pairs of fluorine	1
	(iv)Helium	1
	(v) $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$	1
Q.25	COOH $C_6H_5 - \overset{\cdots}{N} - C - CH_3$ $H O$	1 each
	A = B = C = H O	
	NH ₂ Br	
	NH ₂	

25	OR	
23	(b) $C_2H_5NH_2<(C_2H_5)_3N<(C_2H_5)_2NH$ (c) Add CHCl ₃ and alc KOH , C_6H_5 -NH ₂ gives foul smell of isocyanide whereas C_6H_5 -NH-CH ₃ does not (or any other correct test)	1,1,1
Q.26	(a) $[A]_0 = 0.10 \text{ mol/L}$ $[A] = 0.05 \text{ mol/L}$ at time t = 10s	
	$k = 2.303 \log[A_0]$ t [A]	1/2
	$k = 2.303 \log 0.10$ 10 s 0.05 $k = 0.0693 \text{ s}^{-1}$	1
	t = 20s $k = 2.303 \log[A_0]$ t [A]	
	$k = \frac{2.303}{20 \text{ s}} \frac{\log 0.10}{0.025}$ $k = 0.0693 \text{ s}^{-1}$	1
	As the rate constant is same so it follows pseudo first order reaction.	1/2
	(b) Average rate of reaction = - Δ [R]/ Δ t	1/2
	= - [0.025 – 0.05 / 20 - 10]	1/2
	= $0.0025 \text{ mol } L^{-1}s^{-1}$	1

Downloaded From: http://www.cbseportal.com

26	OR (a) (i) Rate of reaction becomes 4 times (ii) Over all order of reaction = 2	1
	(b) $t_{1/2} = 0.693$ k	
	30min = $\frac{0.693}{k}$ $k = 0.0231 \text{min}^{-1}$	
	$k = 2.303 \log [A_0]$ t [A]	1 1/2
	$t = \frac{2.303 \log 100}{0.0231}$	1/2
	t = 2.303 min 0.0231 $t = 99.7 min$	
		1