CHEMISTRY MARKING SCHEME

2015
56/1/RU

\begin{tabular}{|c|c|c|}
\hline . NO. \& Value points \& MARKS \\
\hline Q. 1 \& \(\mathrm{H}_{2} \mathrm{SO}_{3} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{2} \mathrm{SO}_{5}\) (any two formulae) \& \(1 / 2+1 / 2\) \\
\hline Q. 2 \& 1-ethoxy-2-methylpropane \& 1 \\
\hline Q. 3 \& Due to coagulation of colloidal clay particles \& 1 \\
\hline Q. 4 \& \(\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{3}\) \& 1 \\
\hline Q. 5 \& \(\mathrm{X}_{4} \mathrm{Y}_{3}\) \& 1 \\
\hline Q. 6 \& \begin{tabular}{l}
Similarity : Both show contraction in size /Both show irregularity in their electronic configuration/Both are stable in \(+30 x i d a t i o n ~ s t a t e ~(a n y ~ o n e) ~\) \\
Difference :Actinoids are mainly radioactive but lanthanoids are not/ Actinoids show wide range of oxidation states but lanthanoids do not /Actinoid contraction is greater than lanthanoid contraction. (any other one similarity and one difference)
\end{tabular} \& 1

1

\hline Q. 7 \& | (i) Pentaamminechloridocobalt(III) ion |
| :--- |
| (ii) $\mathrm{K}_{2}\left[\mathrm{NiCl}_{4}\right]$ | \&

\hline Q. 8 \& | (i) $\mathrm{PCC} / \mathrm{Cu}$ at 573 K |
| :--- |
| (ii) NH_{3}, Δ (heat) OR |
| (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}<\mathrm{CH}_{3} \mathrm{COCH}_{3}<\mathrm{CH}_{3} \mathrm{CHO}$ |
| (ii) $\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}<\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}$ | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 |

\hline Q. 9 \& | (i) Negative deviation ,temperature will increase. |
| :--- |
| (ii) Blood cell will swell due to osmosis, water enters into the cell. | \& \[

$$
\begin{aligned}
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\]

\hline Q. 10 \& $$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu} \\
& 63.5 \mathrm{~g} \mathrm{Cu} \text { is deposited }=2 \times 96500 \mathrm{C} \\
& 1.27 \mathrm{~g} \mathrm{Cu} \text { is deposited }=2 \times 96500 \times 1.27 / 63.5 \mathrm{C}=\mathrm{ixt} \quad(\mathrm{Q}=\mathrm{ixt}) \\
& \mathrm{t}=2 \times 96500 \times 1.27 / 63.5 \times 2=1930 \mathrm{~s} \\
& \mathrm{Or}
\end{aligned}
$$ \& 1

1

\hline
\end{tabular}

	by Faraday First law $\begin{aligned} & m=z x i x t \\ & z=\text { atomic mass/valencyxF } \\ & 1.27=63.5 \times 2 \times t / 2 \times 96500 \\ & t=1930 \mathrm{~s} \end{aligned}$	$1 / 2$ $1 / 2$ 1
Q. 11	$\begin{gathered} \frac{p^{0}-p=}{p^{0}} \frac{w_{s} \times \text { Msolvent }, \quad s=\text { solute }}{M_{s} \times \text { Wsolvent }} \\ (32-31.84) / 32=10 \times 18 / \mathrm{Ms} \times 200 \\ M_{s}=180 \mathrm{~g} / \mathrm{mol} \end{gathered}$	1 1 1
Q. 12	(i) Zone refining (ii) SiO_{2} act as flux to remove the impurity of Iron oxide (iii) Depressants prevent one type of sulphide ore forming the froth with air bubbles.	1 1 1
Q. 13	(i) Starch. (ii) α-Helix polypeptide chains are stabilized by intramolecular H -bonding whereas β-pleated sheet is stabilized by intermolecular H -bonding. (or any other difference) (iii) Pernicious anaemia	1 1 1
Q. 14	(i) Hydration isomerism (ii) Electronic configuration ist $_{2 \mathrm{~g}}{ }^{4}$ / or by diagram (iii) Hybridization is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and shape is octahedral.	1 1 $1 / 2+1 / 2$
Q. 15	(i) Benzene diazonium halide (where $\mathrm{X}=\mathrm{Br}$) (ii)	1

\begin{tabular}{|c|c|c|}
\hline \& iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow[\text { dry ether }]{N a} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ \& 1

1

\hline 15 \& | OR |
| :--- |
| (I) | \&

\hline \& | (ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{AgNO}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}+\mathrm{AgCl}$ |
| :--- |
| (iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}+\mathrm{KOH}$ (alc.) $\rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$ | \& 1

1
1

\hline Q. 16 \& | (i) Stoichiometric defect |
| :--- |
| (ii) Schottky defect e.g. NaCl (or any other example) |
| (iii) Density of crystal decreases | \& \[

$$
\begin{aligned}
& 1 \\
& 1 / 2+1 / 2 \\
& 1 \\
& \hline
\end{aligned}
$$
\]

\hline Q. 17 \& $$
\begin{aligned}
& \Lambda_{m}=\frac{1000 \times k}{M} \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\
& \Lambda_{m}=\frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-4}} \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\
& =210 \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\
& \begin{array}{l}
\Lambda_{\mathrm{m}}^{0} \mathrm{HCOOH}=\lambda^{0} \mathrm{HCOO}+\lambda^{0} \mathrm{H}^{+} \\
(50.5+349.5) \mathrm{S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}=400 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\alpha=\Lambda_{\mathrm{m}} / \Lambda_{\mathrm{m}}^{0}
\end{array}
\end{aligned}
$$ \& 1/2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \(\alpha=210 / 400=0.525\) \& 1 \\
\hline Q. 18 \& \begin{tabular}{l}
Physisorption : adsorbate is held by weak van der Waals' force \\
non-specific \\
It forms multimolecular layer \\
Chemisorption : adsorbate molecules are held by strong forces like a chemical bond It is specific \\
It forms unimolecular layer \\
(or any correct three points)
\end{tabular} \& 1,1,1 \\
\hline Q. 19 \& \begin{tabular}{l}
(i) Phenoxide ion is stabilized by resonance as compared to \(\mathrm{CH}_{3} \mathrm{O}^{-}\)/ In phenol, oxygen acquires + ve charge due to resonance and releases \(\mathrm{H}^{+}\)ion easily whereas there is no resonance in methanol. \\
(ii) Due to lone pair- lone pair repulsion on oxygen. \\
(iii) \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}\)is \(3^{0}\) carbo-cation which is more stable than \(\mathrm{CH}_{3}{ }^{+}\)for \(\mathrm{S}_{\mathrm{N}} 1\) reaction.
\end{tabular} \& 1

1
1
1

\hline Q. 20 \& | |
| :--- |
| i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{N}-\mathrm{NH}_{2}$ |
| ii) |
| / benzoic acid |
| iii) | \& 1+1+1

\hline Q. 21 \& | (a) |
| :--- |
| (i) Because Cu^{+}undergoes disproportionation as $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}$ |
| (ii) Because of small size of metal, high ionic charge and availability of vacant d -orbital. |
| (b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{NO}_{2}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{NO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O}$ (Balanced equation only) | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\]

\hline Q. 22 \& | (i) ethylene glycol $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ |
| :--- |
| Terephthalic acid |
| (ii) 1,3-butadiene $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$ |
| Styrene |
| (iii) Chloroprene $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Cl})-\mathrm{CH}=\mathrm{CH}_{2}$ |
| (Note: Half mark for name/s and half mark for structure/s in each case) | \& \[

1 / 2+1 / 2
\]

$$
1 / 2+1 / 2
$$

$$
1 / 2,1 / 2
$$

\hline Q. 23 \& (i) Social awareness ,Health conscious, Caring , empathy, concern .(or any other two values) \& $1 / 2,1 / 2$

\hline
\end{tabular}

